Basic Econometrics - Unit 3 Multiple Regression Analysis - Inference

基础计量经济学(三) 2020/11/09

translated by damien from Marco Avarucci

Basic Econometrics - Unit 3 Multiple Regression Analysis - Inference

  • Statistical inference in the regression model
    回归模型中的统计推断

    • Hypothesis tests about population parameters.
       关于总体参数的假设检验。

    • Construction of confidence intervals.
       置信区间的构造。

  • Sampling distributions of the OLS estimators
    OLS估计量的抽样分布

    • The OLS estimators are random variables.
       OLS估计量是随机变量。

    • We already know their expected values and their variances.
       我们已经知道了它们的期望值和方差。

    • However, for hypothesis tests we need to know their distributions.
       然而,对于假设检验,我们需要知道它们的分布。

    • In order to derive their distributions we need additional assumptions.
       为了得到它们的分布,我们需要额外的假设。

Normal distribution in a nutshell

 简言之(?),正态分布

  • If \( X \sim N(\mu, \sigma ^2) \), then
     如果上式成立,那么
\[Z = \frac{X - \mu}{\sigma} \sim N(0,1)\]
  • Let \( X _1, \cdots, X _n\) be mutually independent random variable with \( X _i \sim N(\mu _i, \sigma _i^2) \). Let \( a _1, \cdots, a _n \) and \( b _1, \cdots, b _n \) be fixed constants. Then,
     设\( X _1, \cdots, X _n\) 与\( X _i \sim N(\mu _i, \sigma _i^2) \)是相互独立的随机变量。让\( a _1, \cdots, a _n \)与\( b _1, \cdots, b _n \)为固定常数。那么,
\[Y = \sum _{i=1}^n (a _i X _i + b _i ) \sim N \left( \sum _{i=1}^n (a _i \mu _i + b _i ), \sum _{i=1}^n a _i^2 \sigma _i^2 \right)\]
  • \(𝑋_1,𝑋_2 \) are jointly normal, then they are independent IFF \(𝐶ov(𝑋 _1,𝑋 _2) = 0 \)
     \(𝑋_1,𝑋_2 \) 是联合正态,那么他们是独立的IFF

  • Assumption MLR.6 (Normality of error terms)
    假设MLR.6(误差项的正态性)

\[u _i \sim N(0, \sigma ^2), \ u_i \text{ independent of } x _{i1}, x _{i2}, \cdots, x _{ik}\]

  • Discussion of the normality assumption
    关于正态性假设的讨论

    • The error term is the sum of many different unobserved factors.
       误差项是许多不同的未观察因素的总和。

    • Number large enough? Possibly very heterogenuous distributions of individual factors. How independent are the different factors?
       数字够大吗?个体因素的分布可能很不均匀。不同的因素有多独立?

    • The normality of the error term is an empirical question
       误差项的正态性是一个经验问题

    • At least the error distribution should be closeto normal
       至少误差分布应该接近正态分布

    • In many cases, normality is questionable or impossible by definition Dependent variables are positive (wages), integer (# muders)….
       在许多情况下,正态性是有问题的或不可能的定义因变量是正的(工资),整数(#muders)。。。。

    • Normality might be achieved trough transformation.
       正态性可以通过变换来实现。

Simulations
模拟

  • Discussion of the normality assumption (cont.)
    关于正态性假设的讨论(续)

    • Ultimately, normality is maintained for convenience.
       归根结底,为了方便而保持常态。

    • It allows to perform exact statistical inference.
       它允许执行精确的统计推断。

    • Important: The assumption of normality can be replaced by a large sample size.
      重要提示:正态性假设可以用大样本代替。

Example

 示例

  • the simple regression \( 𝒚=𝜷 _𝟎 + 𝜷 _𝟏 𝒙 + 𝒖 \)
    简单回归
\[\hat{\beta} _1 = \sum _{i=1}^n c _i y _i, \to c _i = \frac{(x _i - \overline{x})}{\sum _{i=1}^n (x _i - \overline{x}) ^2}\]

Note that
 注意

\[\hat{\beta} _1 = \sum _{i=1}^n c _i (\beta _0 + \beta _1 x _i + u _i) = \sum _{i=1}^n c _i u _i\]

because
 因为

\[\sum _{i=1}^n c _i = 0, \text{ and } \sum _{i=1^n} c _i x _i =1\]

If \( u _i \sim N (0, \sigma ^2) \), then
 如果上式成立,那么

\[\hat{\beta} _1 | X \sim N \left (\beta _1, \frac{\sigma ^2}{\sum _{i=1}^n(x _i - \overline{x}) ^2} \right )\]
  • Terminology
    术语
\[\underbrace{MLR.1 - MLR.5} _{\text{"Gauss-Markov assumptions"}} \quad \underbrace{MLR.1 - MLR.6} _{\text{"Classical Linear Regression Model (CLRM) assumptions"}}\]
  • Theorem 4.1 (Normal sampling distributions)
    定理4.1(正态抽样分布)

Under assumptions MLR.1 –MLR.6:
 在MLR.1-6的假设下

  • **Testing hypotheses about a single population parameter**
    **测试关于单个总体参数的假设**

  • Theorem 4.1 (t-distribution for standardized estimators)
    定理4.1(标准化估计的t分布)

Under assumptions MLR.1 –MLR.6:
 在MLR.1-6的假设下

  • Null hypothesis (Standard in Econometric Softwares)
    零假设(计量经济软件中的标准)

T-Distribution

T分布

  • t-statistic (or t-ratio)
    t统计(或者t-比率)

  • Distribution of the t-statistic if the null hypothesis is true
    如果零假设为真,t统计量的分布
\[t _{\hat{\beta} _j} = \hat{\beta} _j / se( \hat{\beta} _j ) = ( \hat{\beta} _j - \beta _j) / se( \hat{\beta} _j ) \sim t _{n - k -1}\]
  • Goal: Define a rejection rule so that, if it is true, H0is rejected only with a small probability (= significance level, e.g. 5%)目标:定义一个拒绝规则,这样,如果是真的,h0被拒绝的概率很小(=显著性水平,例如5%)

Examples

 示例

  • Example: The sample average
    例子:样本平均

  • Testing against one-sided alternatives (greater than zero)
    针对单向选项(大于零)进行测试

  • Specifying
     指定
\[H _1 : \beta _j > 0\]

  Means the null is effectively
 表示空值是有效的

\[H _0: \beta _j \le 0\]
  • If we reject \( \beta _j = 0\), then we reject any \( \beta _j < 0\)
     如果我们拒绝相等假设,那么我们拒绝任何负值假设。

  • We usually just state \(H _0: \beta _j = 0 \) and act like we don’t care about negative values.
     我们通常做出如上声明,就像我们不关心负值。

  • If \(\hat{\beta} _j \le 0\), it provides no evidence against \(H _0 \)
     如果该值小于等于0,它提供不了证据对抗零假设。

  • If \(\hat{\beta} _j > 0\), how bid does \(t _{\hat{\beta} _j}\) have to be before we conclude that \(H _0\) is unlikely?
     如果该值大于0,在我们得出零假设不太可能之前,\(t _{\hat{\beta} _j}\)的出价应该是多少?

  • Traditional approach to hypothesis testing:
    传统的假设检验方法:

  1. Choose a null hypothesis, e.g. \( H _0 : \beta _j = 0 \)
     选择一个无效假设,例如上述零假设。

  2. Choose an alternative hypothesis, e.g. \( H _0: \beta _j > 0 \)
     选择另一种假设,例如为正值。

  3. Choose a significance level \(\alpha \)(level, size) for the test and compute the critical value \( c _\alpha (Pr(t>c _\alpha) = \alpha)\), so that the refection rule
     为测试选择显著性水平\(\alpha \)(水平,大小)并计算临界值\( c _\alpha (Pr(t>c _\alpha) = \alpha)\),以便反射规则

\[Reject \ \ if \ \ t _{\hat{\beta} _j}>c _\alpha\]

  leads to a \( (\alpha \cdot 100) \)% significance level.
   导致\( (\alpha \cdot 100) \)%%显著性水平。

  • The significance level \(\alpha\) is the probability of rejecting the null hypothesis when it is in fact true(Type I error)
     显著性水平\(\alpha\)是在事实上为真时拒绝无效假设的概率(I型错误)

  • The probabilities of Type I and Type II errors cannot be minimized simultaneously.
     类型I和类型II错误的概率不能同时最小化。

  • The classic approach is to keep \(\alpha \) at a fairly low level(10%, 5%, 1%)
     经典的方法是将\(\alpha \)保持在一个相当低的水平(10%,5%,1%)

  • Example: Wage equation
    示例:工资公式

    • Test whether, after controlling for education and tenure, higher work experience leads to higher hourly wages
       测试在控制了教育和任期后,更高的工作经验是否会导致更高的小时工资

"The effect of experience on hourly wage is statistically greater than zero at the 5% (and even at the 1%) significance level."
“在5%(甚至1%)显著性水平上,经验对小时工资的影响在统计学上大于零。”

  • Testing against one-sided alternatives (less than zero)
    针对单侧备选方案进行测试(小于小于零)

  • Example: Student performance and school size
    例如:学生表现和学校规模

    • Test whether smaller school size leads to better student performance
       测试较小的学校规模是否能提高学生的学习成绩

One cannot reject the hypothesis that there is no effect of school size on student performance (not even for a large significance level of 15%). \\( \hat{\beta} _{enroll} \\) is statistically insignificant at 15% significance level.
我们不能否认学校规模对学生成绩没有影响的假设(即使是15%的显著性水平也没有影响)。\\( \hat{\beta} _{enroll} \\)在15%显著性水平上无统计学意义。

  • Alternative specification of functional form:
     函数形式的替代规范:

The hypothesis that there is no effect of school size on student performance can be rejected in favor of the hypothesis that the effect is negative.
学校规模对学生成绩没有影响的假设可能会被否定,而支持消极影响的假设。

  • Testing against two-sided alternatives
    测试双面替代品

  • Example: Determinants of college GPA
     例如:大学平均绩点的决定因素

  • “Statistically significant“ variables in a regression
    回归中的“统计显著”变量

    • If a regression coefficient is different from zero in a two-sided test, the corresponding variable is said to be “statistically significant”
       如果在双边检验中回归系数不同于零,则相应变量称为“统计显著性”

    • If the number of degrees of freedom is large enough so that the normal approximation applies, the following rules of thumb apply:
       如果自由度的数目足够大,以致于法向近似适用,则以下经验法则适用:

    \[\begin{array}{l} |t-ratio| > 1.645 & \to \text{ "statistically significant at 10% level"} \\\\ |t-ratio| > 1.96 & \to \text{ "statistically significant at 5% level"} \\\\ |t-ratio| > 2.576 & \to \text{ "statistically significant at 1% level"} \end{array}\]

Remarks:
 备注:

  • Our hypothesis involve the unknown \(\beta _j, \ j = 1, \cdots, k \)
     我们的假设涉及未知的\(\beta _j, \ j = 1, \cdots, k \)

  • Assume that \(\hat{\beta} _j = 2.75 \). We don’t write the null hypothesis as
     假设\(\hat{\beta} _j = 2.75 \)。我们不把零假设写成

\[H _0 : 2.75 =0\]
  • Nor do we write
     我们也不写
\[H _0 : \hat{\beta} _j = 0\]

We are testing if 2.75 is likely to be a realization of a normally distribution random variable centred in \(\beta _j \) with variance \(Var(\hat{\beta} _j)\).
 我们正在测试2.75是否可能是一个正态分布随机变量的实现,其中心为\(\beta _j \),方差为\(Var(\hat{\beta} _j)\)。

  • Practical versus Statistical Significance
    实际意义与统计意义

    • t-testing is purely about statistical significance
       t检验纯粹是关于统计显著性

    • *Practical(Economic) significance* depends on the size and sign of \(\hat{\beta} _j \)
       实际(经济)意义取决于\(\hat{\beta} _j \)的大小和符号

    • It is possible to estimate large(meaningful) economic effects but have the estimates so imprecise that they are statistically insignificant(small dataset, multicollinearity).
       有可能估计出大的(有意义的)经济影响,但由于估计太不精确,所以在统计上不重要(小数据集,多重共线性)。

    • It is possible to get estimates that are statistically significant(small p-values) but are not practically large.
       可以得到具有统计意义(小p值)但实际上并不大的估计值。

    • Do not just fixate on t statistics! Interpreting the \(\hat{\beta} _j \) is just as important.
       不要只专注于t统计数据!解释\(\hat{\beta} _j \)同样重要。

  • Testing more general hypotheses about a regression coefficient
     检验关于回归系数的更一般的假设

  • **The test works exactly as before, except that the hypothesized value is substracted from the estimate when forming the statistic**
    **除了在形成统计数据时从估计值中减去假设值外,测试的工作原理与之前完全相同**

  • Example: Campus crime and enrollment
    例如:校园犯罪和招生

    • An interesting hypothesis is whether crime increases by one percent if enrollment is increased by one percent
       一个有趣的假设是,如果入学人数增加1%,犯罪率是否会增加1%

 Language:\(\hat{\beta} _{log(enroll)}\) is statistically different from 1 at 5% level.
  语言:\(\hat{\beta} _{log(enroll)}\) 与1在5%水平上有统计学差异。

  • **Computing p-values for t-tests**
    **计算t检验的p值**

    • If the significance level is made smaller and smaller, there will be a point where the null hypothesis cannot be rejected anymore
       如果显著性水平越来越小,就会出现一个不能再拒绝无效假设的点

    • Lowering the significance level reduces Pr(Type I err)
       降低显著性水平降低Pr(I型错误)

    • Definition

      :The smallest significance level at which the null hypothesis is still rejected, is called the p-valueof the hypothesis test
      定义:无效假设仍被拒绝的最小显著性水平,称为假设检验的p值

    • A small p-value is evidence against the null hypothesis because one would reject the null hypothesis even at small significance levels
       一个小的p值是反对无效假设的证据,因为即使在很小的显著性水平上,人们也会拒绝无效假设

    • A large p-value is evidence in favor of the null hypothesis
       一个大的p值是支持无效假设的证据

    • P-values are more informative than tests at fixed significance levels
       P值比固定显著性水平下的检验更具信息性
  • How the p-value is computed (here: two-sided test)
    如何计算p值(此处:双边试验)

  • Given a p-value, we can carry out a test at any significance level
     给定一个p值,我们可以在任何显著性水平上进行检验

  • If \(\alpha \) is the chosen level, then
     如果\(\alpha\)是所选级别,则

\[\text{Reject} H _0 \text{ if } p-value < \alpha \text{, Do not reject } H _0 \text{ if } p-value > \alpha\]
  • Example: Student performance and sccol size(one sided, n=408)
     示例:学生表现和sccol大小(单侧,n=408)
\[\begin{array}{m} t _{log(enroll)} = -1.29/.69 \approx -1.87 \\\\ Pr(t \le -1.87) = Pr(t \ge 1.87) = 0.0307 \end{array}\]

 The null is rejected at 5%, it is not rejected at 1%
 空假设在5%时被拒绝,在1%时不被拒绝

  • Eviews reports two sided p-value. Divide by two to obtain one-sided p-value.
     Eviews报告双面p值。除以二得到单面的p值

**Confidence Intervals**
**置信区间**

  • The CI (also know as interval estimate) is supposed to give a “likely” range of values for the population parameters.
     CI(也称为区间估计)应该给出总体参数的“可能”值范围。

  • The \(\alpha % \) confidence interval for \(\beta _j \) , is of the form
     \(\beta\u j\)的\(\alpha%\)置信区间的形式如下

\[\hat{\beta} _j \pm c _\alpha \cdot se(\hat{\beta} _j)\]
  • For 95% CI, \(c _\alpha \) comes from the 97.5 percentile in the \( t _{df}\) distribution.
     对于95%置信区间,\(c \ alpha\)来自于\(t{df}\)分布的97.5个百分位数。

  • The width of the CI depends on precision of the estimates and confidence level.
     置信区间的宽度取决于估计的精度和置信水平。

F-Distribution

 ##F分布

  • Let \(\alpha = 5%\),
     设\(\alpha = 5%\),

  • Interpretation of the confidence interval
    置信区间的解释

    • The bounds of the interval are random
       区间的界限是随机的

    • In repeated samples, the interval that is constructed in the above way will cover the population regression coefficient in 95% of the casess
       在重复样本中,用上述方法构造的区间将覆盖95%的样本的总体回归系数

  • Confidence intervals for typical confidence levels
     典型置信水平的置信区间

  • Relationship between confidence intervals and hypotheses tests
     置信区间与假设检验的关系
\[\alpha \notin interval \Rightarrow \text{reject} H _0: \beta _j = a _j \text{ in favor of } H _1 : \beta _j \neq a _j\]

  • Example: Model of firms‘ R&D expenditures
     *示例:企业研发支出模型**

  • One often sees statements such as “there is a 95%” chance that \(\beta _{log(sales)} \) is in the interval [0.961,1.21]
     人们经常会看到这样的语句:“有95%的可能性,\(\beta _{log(sales)} \)在区间[0.961,1.21]

  • This is incorrect. \(\beta _{log(sales)} \) is a fixed (unknown)value, and it either is or is not in the interval.
     这是不正确的。\(\beta _{log(sales)} \)是一个固定的(未知)值,它要么在区间内,要么不在区间内。

  • For a particular sample, we don’t know whether \(\beta _{log(sales)} \) is in the interval
     对于一个特定的示例,我们不知道\(\beta _{log(sales)} \)是否在间隔内

  • **Testing Single Linear Restrictions**
    **测试单一线性限制**

Example

 示例

  • Return to education at 2 year vs. at 4 year colleges
    2年制大学与4年制大学的回归教育

  • Impossible to compute with standard regression output because
    无法使用标准回归输出进行计算,因为

  • Alternative method
    替代方法

  • Estimation results
    估算结果

  • This method works always for single linear hypotheses
    这种方法对单个线性假设总是有效的

  • **Testing multiple linear restrictions: The F-test**
    **测试多重线性限制:F测试**

  • Testing exclusion restrictions
    测试排除限制

  • Estimation of the unrestricted model
    非限制模型的预测

  • Test statistic测试统计

  • Rejection rule(Figure)
    拒绝规则(图)

  • Test decision in the example
    示例中的测试决策

  • Discussion
    讨论

    • The three variables are “jointly significant”
       这三个变量“共同显著”。

    • They were not significant when tested individually. Should we conclude that none of bavg, hyrunsyr, and rbisyr affects baseball player salaries? NO. This could be a mistake.
       单独测试时,它们并不显著。我们是否应该得出这样的结论:bavghyrunsyrrbisyr*都不会影响棒球运动员的工资?不,这可能是个错误。

    • The likely reason is multicollinearity between them (STANDARD ERRORS!)
       可能的原因是它们之间的多重共线性(标准误差!)

    • Corr(hyrunsyr,rbisyr )=0.89. One cannot hit a home run without getting at least one run batted in.
       Corr(hyrunsyrrbisyr)=0.89。一个人不可能打出一个本垒打而不得到至少一次击球。

Joint Hypotheses Test

 联合假设检验

  • We want to see how the fit deteriorates as we remove a subset of variables (joint hypotheses test).
     我们想看看当我们去掉一部分变量(联合假设检验)时,拟合度是如何恶化的。

  • \(SSR _r \ge SSR _{ur} \)(algebraic fact).
    \(SSR _r \ge SSR _{ur} \)(代数事实)。

  • The F-test essentially ask: does the SSR increase proportionally by enough to conclude the restrictions under \(H _0\) are false?
     F检验本质上是在问:SSR是否按比例增加到足以得出结论,在\(H _0\)下的限制是错误的?

  • The F-statistic use a degree of freedom adjustment.
     F统计量使用自由度调整。

  • If the null is rejected, the test will not tell us which parameter is different from zero.
     如果null被拒绝,测试将不会告诉我们哪个参数不同于零。

  • **Test of overall significance of a regression**
    **回归总体显著性检验**

  • The test of overall significance is reported in most regression packages; the null hypothesis is usually overwhelmingly rejected
     *在大多数回归包中报告了总体显著性检验;无效假设通常被压倒性地拒绝**

  • **Testing general linear restrictions with the F-test**
    **用F-检验法检验一般线性限制条件**

Example

 示例

  • Test whether house price assessments are rational
    检验房价评估是否合理

  • Regression output for the unrestricted regression
     无限制回归的回归输出

  • Square sum restricted resduals
     平方和限制重数
\[\begin{array}{l} x _i = log(price _i) - log(assess _i) \text{, } SSR _r = \sum _{i=1}^n (x _i - \overline{x}) ^2 = 1.880 \\\\ F = \frac{(SSR _r -SSR _{ur})/q}{SSR _{ur}/(n - k -1)} = \frac{(1.880 - 1.822)/4}{1.822/(88 - 4 -1)} \approx .661 \\\\ F \sim F _{4,83} \Rightarrow c _0.05 = 2.50 \Rightarrow H _0 \text{ cannot be rejected} \end{array}\]
  • The F-test works for general multiple linear hypotheses
     F检验适用于一般多重线性假设

  • For all tests and confidence intervals, validity of assumptions MLR.1 –MLR.6 has been assumed. Tests may be invalid otherwise.
     对于所有测试和置信区间,假设MLR.1–MLR.6的有效性已被假定。否则测试可能无效。

  • **F- and t-statistics**
    **F-和t-统计**

    • If \( q=1, F = t ^2\)

    • The t-test is more transparent and allows one-sided alternatives
       t检验更为透明,允许单边选择

  • \(\underline{R ^2 \text{ form of the } F-statistic}\)

    • Assume that the same dependent variable is used in two regressions
       假设在两个回归中使用相同的因变量

    • \( SSR _r = (1-R _r^2)SST \text{, } SSR _{ur} = (1 - R _{ur}^2) SST\)

\[F = \frac{(R _{ur}^2 - R _r^2)/q}{(1-R _{ur}^2)/(n - k -1)}\]

Show Disqus Comments

Post Directory