translated by damien from Marco Avarucci
Basic Econometrics - Unit 3 Multiple Regression Analysis - Inference
-
Statistical inference in the regression model
回归模型中的统计推断-
Hypothesis tests about population parameters.
关于总体参数的假设检验。 -
Construction of confidence intervals.
置信区间的构造。
-
-
Sampling distributions of the OLS estimators
OLS估计量的抽样分布-
The OLS estimators are random variables.
OLS估计量是随机变量。 -
We already know their expected values and their variances.
我们已经知道了它们的期望值和方差。 -
However, for hypothesis tests we need to know their distributions.
然而,对于假设检验,我们需要知道它们的分布。 -
In order to derive their distributions we need additional assumptions.
为了得到它们的分布,我们需要额外的假设。
-
Normal distribution in a nutshell
简言之(?),正态分布
- If \( X \sim N(\mu, \sigma ^2) \), then
如果上式成立,那么
- Let \( X _1, \cdots, X _n\) be mutually independent random variable with \( X _i \sim N(\mu _i, \sigma _i^2) \). Let \( a _1, \cdots, a _n \) and \( b _1, \cdots, b _n \) be fixed constants. Then,
设\( X _1, \cdots, X _n\) 与\( X _i \sim N(\mu _i, \sigma _i^2) \)是相互独立的随机变量。让\( a _1, \cdots, a _n \)与\( b _1, \cdots, b _n \)为固定常数。那么,
-
\(𝑋_1,𝑋_2 \) are jointly normal, then they are independent IFF \(𝐶ov(𝑋 _1,𝑋 _2) = 0 \)
\(𝑋_1,𝑋_2 \) 是联合正态,那么他们是独立的IFF -
Assumption MLR.6 (Normality of error terms)
假设MLR.6(误差项的正态性)
-
Discussion of the normality assumption
关于正态性假设的讨论-
The error term is the sum of many different unobserved factors.
误差项是许多不同的未观察因素的总和。 -
Number large enough? Possibly very heterogenuous distributions of individual factors. How independent are the different factors?
数字够大吗?个体因素的分布可能很不均匀。不同的因素有多独立? -
The normality of the error term is an empirical question
误差项的正态性是一个经验问题 -
At least the error distribution should be closeto normal
至少误差分布应该接近正态分布 -
In many cases, normality is questionable or impossible by definition Dependent variables are positive (wages), integer (# muders)….
在许多情况下,正态性是有问题的或不可能的定义因变量是正的(工资),整数(#muders)。。。。 -
Normality might be achieved trough transformation.
正态性可以通过变换来实现。
-
Simulations
模拟
-
Discussion of the normality assumption (cont.)
关于正态性假设的讨论(续)-
Ultimately, normality is maintained for convenience.
归根结底,为了方便而保持常态。 -
It allows to perform exact statistical inference.
它允许执行精确的统计推断。 -
Important: The assumption of normality can be replaced by a large sample size.
重要提示:正态性假设可以用大样本代替。
-
Example
示例
- the simple regression \( 𝒚=𝜷 _𝟎 + 𝜷 _𝟏 𝒙 + 𝒖 \)
简单回归
Note that
注意
because
因为
If \( u _i \sim N (0, \sigma ^2) \), then
如果上式成立,那么
- Terminology
术语
- Theorem 4.1 (Normal sampling distributions)
定理4.1(正态抽样分布)
Under assumptions MLR.1 –MLR.6:
在MLR.1-6的假设下
-
**Testing hypotheses about a single population parameter**
**测试关于单个总体参数的假设** -
Theorem 4.1 (t-distribution for standardized estimators)
定理4.1(标准化估计的t分布)
Under assumptions MLR.1 –MLR.6:
在MLR.1-6的假设下
- Null hypothesis (Standard in Econometric Softwares)
零假设(计量经济软件中的标准)
T-Distribution
T分布
- t-statistic (or t-ratio)
t统计(或者t-比率)
- Distribution of the t-statistic if the null hypothesis is true
如果零假设为真,t统计量的分布
- Goal: Define a rejection rule so that, if it is true, H0is rejected only with a small probability (= significance level, e.g. 5%) 目标:定义一个拒绝规则,这样,如果是真的,h0被拒绝的概率很小(=显著性水平,例如5%)
Examples
示例
- Example: The sample average
例子:样本平均
- Testing against one-sided alternatives (greater than zero)
针对单向选项(大于零)进行测试
- Specifying
指定
Means the null is effectively
表示空值是有效的
-
If we reject \( \beta _j = 0\), then we reject any \( \beta _j < 0\)
如果我们拒绝相等假设,那么我们拒绝任何负值假设。 -
We usually just state \(H _0: \beta _j = 0 \) and act like we don’t care about negative values.
我们通常做出如上声明,就像我们不关心负值。 -
If \(\hat{\beta} _j \le 0\), it provides no evidence against \(H _0 \)
如果该值小于等于0,它提供不了证据对抗零假设。 -
If \(\hat{\beta} _j > 0\), how bid does \(t _{\hat{\beta} _j}\) have to be before we conclude that \(H _0\) is unlikely?
如果该值大于0,在我们得出零假设不太可能之前,\(t _{\hat{\beta} _j}\)的出价应该是多少? -
Traditional approach to hypothesis testing:
传统的假设检验方法:
-
Choose a null hypothesis, e.g. \( H _0 : \beta _j = 0 \)
选择一个无效假设,例如上述零假设。 -
Choose an alternative hypothesis, e.g. \( H _0: \beta _j > 0 \)
选择另一种假设,例如为正值。 -
Choose a significance level \(\alpha \)(level, size) for the test and compute the critical value \( c _\alpha (Pr(t>c _\alpha) = \alpha)\), so that the refection rule
为测试选择显著性水平\(\alpha \)(水平,大小)并计算临界值\( c _\alpha (Pr(t>c _\alpha) = \alpha)\),以便反射规则
leads to a \( (\alpha \cdot 100) \)% significance level.
导致\( (\alpha \cdot 100) \)%%显著性水平。
-
The significance level \(\alpha\) is the probability of rejecting the null hypothesis when it is in fact true(Type I error)
显著性水平\(\alpha\)是在事实上为真时拒绝无效假设的概率(I型错误) -
The probabilities of Type I and Type II errors cannot be minimized simultaneously.
类型I和类型II错误的概率不能同时最小化。 -
The classic approach is to keep \(\alpha \) at a fairly low level(10%, 5%, 1%)
经典的方法是将\(\alpha \)保持在一个相当低的水平(10%,5%,1%)
-
Example: Wage equation
示例:工资公式- Test whether, after controlling for education and tenure, higher work experience leads to higher hourly wages
测试在控制了教育和任期后,更高的工作经验是否会导致更高的小时工资
- Test whether, after controlling for education and tenure, higher work experience leads to higher hourly wages
"The effect of experience on hourly wage is statistically greater than zero at the 5% (and even at the 1%) significance level."
“在5%(甚至1%)显著性水平上,经验对小时工资的影响在统计学上大于零。”
- Testing against one-sided alternatives (less than zero)
针对单侧备选方案进行测试(小于小于零)
-
Example: Student performance and school size
例如:学生表现和学校规模- Test whether smaller school size leads to better student performance
测试较小的学校规模是否能提高学生的学习成绩
- Test whether smaller school size leads to better student performance
One cannot reject the hypothesis that there is no effect of school size on student performance (not even for a large significance level of 15%). \\( \hat{\beta} _{enroll} \\) is statistically insignificant at 15% significance level.
我们不能否认学校规模对学生成绩没有影响的假设(即使是15%的显著性水平也没有影响)。\\( \hat{\beta} _{enroll} \\)在15%显著性水平上无统计学意义。
- Alternative specification of functional form:
函数形式的替代规范:
The hypothesis that there is no effect of school size on student performance can be rejected in favor of the hypothesis that the effect is negative.
学校规模对学生成绩没有影响的假设可能会被否定,而支持消极影响的假设。
- Testing against two-sided alternatives
测试双面替代品
- Example: Determinants of college GPA
例如:大学平均绩点的决定因素
-
“Statistically significant“ variables in a regression
回归中的“统计显著”变量-
If a regression coefficient is different from zero in a two-sided test, the corresponding variable is said to be “statistically significant”
如果在双边检验中回归系数不同于零,则相应变量称为“统计显著性” -
If the number of degrees of freedom is large enough so that the normal approximation applies, the following rules of thumb apply:
如果自由度的数目足够大,以致于法向近似适用,则以下经验法则适用:
-
Remarks:
备注:
-
Our hypothesis involve the unknown \(\beta _j, \ j = 1, \cdots, k \)
我们的假设涉及未知的\(\beta _j, \ j = 1, \cdots, k \) -
Assume that \(\hat{\beta} _j = 2.75 \). We don’t write the null hypothesis as
假设\(\hat{\beta} _j = 2.75 \)。我们不把零假设写成
- Nor do we write
我们也不写
We are testing if 2.75 is likely to be a realization of a normally distribution random variable centred in \(\beta _j \) with variance \(Var(\hat{\beta} _j)\).
我们正在测试2.75是否可能是一个正态分布随机变量的实现,其中心为\(\beta _j \),方差为\(Var(\hat{\beta} _j)\)。
-
Practical versus Statistical Significance
实际意义与统计意义-
t-testing is purely about statistical significance
t检验纯粹是关于统计显著性 -
*Practical(Economic) significance* depends on the size and sign of \(\hat{\beta} _j \)
实际(经济)意义取决于\(\hat{\beta} _j \)的大小和符号 -
It is possible to estimate large(meaningful) economic effects but have the estimates so imprecise that they are statistically insignificant(small dataset, multicollinearity).
有可能估计出大的(有意义的)经济影响,但由于估计太不精确,所以在统计上不重要(小数据集,多重共线性)。 -
It is possible to get estimates that are statistically significant(small p-values) but are not practically large.
可以得到具有统计意义(小p值)但实际上并不大的估计值。 -
Do not just fixate on t statistics! Interpreting the \(\hat{\beta} _j \) is just as important.
不要只专注于t统计数据!解释\(\hat{\beta} _j \)同样重要。
-
-
Testing more general hypotheses about a regression coefficient
检验关于回归系数的更一般的假设
-
**The test works exactly as before, except that the hypothesized value is substracted from the estimate when forming the statistic**
**除了在形成统计数据时从估计值中减去假设值外,测试的工作原理与之前完全相同** -
Example: Campus crime and enrollment
例如:校园犯罪和招生- An interesting hypothesis is whether crime increases by one percent if enrollment is increased by one percent
一个有趣的假设是,如果入学人数增加1%,犯罪率是否会增加1%
- An interesting hypothesis is whether crime increases by one percent if enrollment is increased by one percent
Language:\(\hat{\beta} _{log(enroll)}\) is statistically different from 1 at 5% level.
语言:\(\hat{\beta} _{log(enroll)}\) 与1在5%水平上有统计学差异。
-
**Computing p-values for t-tests**
**计算t检验的p值**-
If the significance level is made smaller and smaller, there will be a point where the null hypothesis cannot be rejected anymore
如果显著性水平越来越小,就会出现一个不能再拒绝无效假设的点 -
Lowering the significance level reduces Pr(Type I err)
降低显著性水平降低Pr(I型错误) -
Definition
:The smallest significance level at which the null hypothesis is still rejected, is called the p-valueof the hypothesis test
定义:无效假设仍被拒绝的最小显著性水平,称为假设检验的p值 -
A small p-value is evidence against the null hypothesis because one would reject the null hypothesis even at small significance levels
一个小的p值是反对无效假设的证据,因为即使在很小的显著性水平上,人们也会拒绝无效假设 -
A large p-value is evidence in favor of the null hypothesis
一个大的p值是支持无效假设的证据 - P-values are more informative than tests at fixed significance levels
P值比固定显著性水平下的检验更具信息性
-
-
How the p-value is computed (here: two-sided test)
如何计算p值(此处:双边试验)
-
Given a p-value, we can carry out a test at any significance level
给定一个p值,我们可以在任何显著性水平上进行检验 -
If \(\alpha \) is the chosen level, then
如果\(\alpha\)是所选级别,则
- Example: Student performance and sccol size(one sided, n=408)
示例:学生表现和sccol大小(单侧,n=408)
The null is rejected at 5%, it is not rejected at 1%
空假设在5%时被拒绝,在1%时不被拒绝
- Eviews reports two sided p-value. Divide by two to obtain one-sided p-value.
Eviews报告双面p值。除以二得到单面的p值。
**Confidence Intervals**
**置信区间**
-
The CI (also know as interval estimate) is supposed to give a “likely” range of values for the population parameters.
CI(也称为区间估计)应该给出总体参数的“可能”值范围。 -
The \(\alpha % \) confidence interval for \(\beta _j \) , is of the form
\(\beta\u j\)的\(\alpha%\)置信区间的形式如下
-
For 95% CI, \(c _\alpha \) comes from the 97.5 percentile in the \( t _{df}\) distribution.
对于95%置信区间,\(c \ alpha\)来自于\(t{df}\)分布的97.5个百分位数。 -
The width of the CI depends on precision of the estimates and confidence level.
置信区间的宽度取决于估计的精度和置信水平。
F-Distribution
##F分布
- Let \(\alpha = 5%\),
设\(\alpha = 5%\),
-
Interpretation of the confidence interval
置信区间的解释-
The bounds of the interval are random
区间的界限是随机的 -
In repeated samples, the interval that is constructed in the above way will cover the population regression coefficient in 95% of the casess
在重复样本中,用上述方法构造的区间将覆盖95%的样本的总体回归系数
-
-
Confidence intervals for typical confidence levels
典型置信水平的置信区间
- Relationship between confidence intervals and hypotheses tests
置信区间与假设检验的关系
- Example: Model of firms‘ R&D expenditures
*示例:企业研发支出模型**
-
One often sees statements such as “there is a 95%” chance that \(\beta _{log(sales)} \) is in the interval [0.961,1.21]
人们经常会看到这样的语句:“有95%的可能性,\(\beta _{log(sales)} \)在区间[0.961,1.21] -
This is incorrect. \(\beta _{log(sales)} \) is a fixed (unknown)value, and it either is or is not in the interval.
这是不正确的。\(\beta _{log(sales)} \)是一个固定的(未知)值,它要么在区间内,要么不在区间内。 -
For a particular sample, we don’t know whether \(\beta _{log(sales)} \) is in the interval
对于一个特定的示例,我们不知道\(\beta _{log(sales)} \)是否在间隔内 -
**Testing Single Linear Restrictions**
**测试单一线性限制**
Example
示例
- Return to education at 2 year vs. at 4 year colleges
2年制大学与4年制大学的回归教育
- Impossible to compute with standard regression output because
无法使用标准回归输出进行计算,因为
- Alternative method
替代方法
- Estimation results
估算结果
-
This method works always for single linear hypotheses
这种方法对单个线性假设总是有效的 -
**Testing multiple linear restrictions: The F-test**
**测试多重线性限制:F测试** -
Testing exclusion restrictions
测试排除限制
- Estimation of the unrestricted model
非限制模型的预测
- Test statistic 测试统计
- Rejection rule(Figure)
拒绝规则(图)
- Test decision in the example
示例中的测试决策
-
Discussion
讨论-
The three variables are “jointly significant”
这三个变量“共同显著”。 -
They were not significant when tested individually. Should we conclude that none of bavg, hyrunsyr, and rbisyr affects baseball player salaries? NO. This could be a mistake.
单独测试时,它们并不显著。我们是否应该得出这样的结论:bavg、hyrunsyr和rbisyr*都不会影响棒球运动员的工资?不,这可能是个错误。 -
The likely reason is multicollinearity between them (STANDARD ERRORS!)
可能的原因是它们之间的多重共线性(标准误差!) -
Corr(hyrunsyr,rbisyr )=0.89. One cannot hit a home run without getting at least one run batted in.
Corr(hyrunsyr,rbisyr)=0.89。一个人不可能打出一个本垒打而不得到至少一次击球。
-
Joint Hypotheses Test
联合假设检验
-
We want to see how the fit deteriorates as we remove a subset of variables (joint hypotheses test).
我们想看看当我们去掉一部分变量(联合假设检验)时,拟合度是如何恶化的。 -
\(SSR _r \ge SSR _{ur} \)(algebraic fact).
\(SSR _r \ge SSR _{ur} \)(代数事实)。 -
The F-test essentially ask: does the SSR increase proportionally by enough to conclude the restrictions under \(H _0\) are false?
F检验本质上是在问:SSR是否按比例增加到足以得出结论,在\(H _0\)下的限制是错误的? -
The F-statistic use a degree of freedom adjustment.
F统计量使用自由度调整。 -
If the null is rejected, the test will not tell us which parameter is different from zero.
如果null被拒绝,测试将不会告诉我们哪个参数不同于零。 -
**Test of overall significance of a regression**
**回归总体显著性检验**
-
The test of overall significance is reported in most regression packages; the null hypothesis is usually overwhelmingly rejected
*在大多数回归包中报告了总体显著性检验;无效假设通常被压倒性地拒绝** -
**Testing general linear restrictions with the F-test**
**用F-检验法检验一般线性限制条件**
Example
示例
- Test whether house price assessments are rational
检验房价评估是否合理
- Regression output for the unrestricted regression
无限制回归的回归输出
- Square sum restricted resduals
平方和限制重数
-
The F-test works for general multiple linear hypotheses
F检验适用于一般多重线性假设 -
For all tests and confidence intervals, validity of assumptions MLR.1 –MLR.6 has been assumed. Tests may be invalid otherwise.
对于所有测试和置信区间,假设MLR.1–MLR.6的有效性已被假定。否则测试可能无效。 -
**F- and t-statistics**
**F-和t-统计**-
If \( q=1, F = t ^2\)
-
The t-test is more transparent and allows one-sided alternatives
t检验更为透明,允许单边选择
-
-
\(\underline{R ^2 \text{ form of the } F-statistic}\)
-
Assume that the same dependent variable is used in two regressions
假设在两个回归中使用相同的因变量 -
\( SSR _r = (1-R _r^2)SST \text{, } SSR _{ur} = (1 - R _{ur}^2) SST\)
-