translated by damien from Marco Avarucci
Basic Econometrics - Unit 6 Basic Regression Analysis with Time Series
计量经济学基础第6单元时间序列基本回归分析
The nature of time series data
时间序列数据的性质
-
Temporal ordering of observations; may not be arbitrarily reordered Typical features: serial correlation/dependence of observations How should we think about the randomness in time series data?
观测值的时间顺序;不能任意重新排序典型特征:观测值的序列相关性/依赖性我们应该如何看待时间序列数据中的随机性? -
The outcome of economic variables (e.g. GNP, Dow Jones) is uncertain; they should therefore be modeled as random variables
经济变量(如国民生产总值、道琼斯指数)的结果是不确定的,因此应将其建模为随机变量 -
Time series are sequences of r.v. (= stochastic processes)
时间序列是r.v.(=随机过程)的序列 -
“Sample” = the one realized path of the time series out of the many possible paths the stochastic process could have taken
“样本”=随机过程可能采取的许多可能路径中,时间序列的一条实现路径
Examples of time series regression models
时间序列回归模型实例
-
Static models
静态模型- In static time series models, the current value of one variable is modeled as the result of the current values of explanatory variables
在静态时间序列模型中,一个变量的当前值被建模为解释变量当前值的结果
- In static time series models, the current value of one variable is modeled as the result of the current values of explanatory variables
-
Examples for static models
静态模型示例
-
Finite distributed lag models
有限分布滞后模型- In finite distributed lag models, the explanatory variables are allowed to influence the dependent variable with a time lag
在有限分布滞后模型中,允许解释变量以时滞影响因变量
- In finite distributed lag models, the explanatory variables are allowed to influence the dependent variable with a time lag
-
Example for a finite distributed lag model
有限分布滞后模型示例- The fertility rate may depend on the tax value of a child, but for biological and behavioral reasons, the effect may have a lag
生育率可能取决于孩子的纳税价值,但由于生理和行为原因,其影响可能有滞后性
- The fertility rate may depend on the tax value of a child, but for biological and behavioral reasons, the effect may have a lag
Finite sample properties of OLS under classical assumptions
经典假设下OLS的有限样本性质
- Assumption TS.1 (Linear in parameters)
假设TS.1(参数线性)
- Assumption TS.2 (No perfect collinearity)
假设TS.2(无完全共线)
“In the sample (and therefore in the underlying time series process), no independent variable is constant nor a perfect linear combination of the others.”
“在样本中(因此在基本的时间序列过程中),没有自变量是常数,也没有其他变量的完美线性组合。
- Notion
概念
- Assumption TS.3 (Zero conditional mean)
假设TS.3(零条件平均值)
- Discussion of assumption TS.3
关于假设TS.3的讨论
-
(Contemporaneous) Exogeneity is not enough to ensure unbiasdness.
(同期)外生不足以确保公正。 -
TS.3 rules out feedback from the dep. variable on future values of the explanatory variables; \( y _{t-j}, j >0 \) cannot be included as regressors.
TS.3排除了来自解释变量未来值的部门变量的反馈;\(y{t-j},j>0\)不能作为回归变量。-
\( mrdrte _t = \beta _0 + \beta _1 polpc _t + \beta _2 mrdrte _{t-1} + u _t = \beta _0 + \beta _1 x _{1,t} + \beta _2 x _{2,t} + u _t \)
-
\( E(u _t x _{2, t+1}) \neq 0 \)
-
-
Example (inflation and federal fund rate)
*示例(通货膨胀和联邦基金利率)**-
\( inf _t = \beta _0 + \beta _1 ffrate _t + \beta _1 ffrate _{t-1} + \beta _2 ffrate _{t-2} + u _t .\)
-
\( u _t >0 \) might lead FED to increase the \( ffrate \) the next period. Then \( ffrate _{t+1}\) and \( u _t \) are correlated, violating strict exogeneity.
-
-
Theorem 10.1 (Unbiasedness of OLS)
定理10.1(OLS的无偏性)
-
Assumption TS.4 (Homoscedasticity)
假设TS.4(同方差)-
A sufficient condition is that the volatility of the error is independent of the explanatory variables and that it is constant over time.
一个充分条件是,误差的波动性与解释变量无关,并且随时间的变化是常数。 -
In the time series context, homoscedasticity may also be easily violated, e.g. if the volatility of the dep. variable depends on regime changes.
在时间序列的背景下,同方差也可能很容易被破坏,例如,如果dep.变量的波动性取决于制度的变化。
-
- Assumption TS.5 (No serial correlation)
假设TS.5(无序列相关)
-
Discussion of assumption TS.5
假设TS.5的讨论-
Why was such an assumption not made in the cross-sectional case?
为什么在横截面情况下没有作出这样的假设? -
When \(Corr(u _t, u _s) \neq 0\) for some \(𝑡≠𝑠 \), we say that the error exibith serial correlation (autocorrelation)
当\(Corr(u _t, u _s) \neq 0\)用于某些\(𝑡≠𝑠 \)时,我们说错误存在位序列相关(自相关) -
Three types of correlation:
三种类型的相关性:
-
-
Theorem 10.2 (OLS sampling variances)
定理10.2(OLS抽样方差)
- Theorem 10.3 (Unbiased estimation of the error variance)
定理10.3(误差方差的无偏估计)
-
Theorem 10.4 (Gauss-Markov Theorem)
定理10.4(高斯-马尔可夫定理)-
Under assumptions TS.1–TS.5, the OLS estimators have the minimal variance of all linear unbiased estimators of the regression coefficients
在假设TS.1–TS.5下,OLS估计量具有回归系数的所有线性无偏估计量的最小方差 -
This holds conditional as well as unconditional on the regressors
这对回归者既有条件的,也有无条件的
-
-
Assumption TS.6 (Normality)
\[u _t \sim \text{iid} \ N(0, \sigma ^2) \quad \text{ indenpent of } X\]
假设TS.6(正态)
This assumption implies TS.3 - TS.5.
这一假设意味着TS.3-TS.5。
-
Theorem 10.5 (Normal sampling distributions)
定理10.5(正态抽样分布)- Under assumptions TS.1 – TS.6, the OLS estimators have the usual nor-mal distribution (conditional on X ). The usual F-and t-tests are valid.
在假设TS.1-TS.6下,OLS估计具有通常的正态分布(以X为条件)。通常的F检验和t检验是有效的。
- Under assumptions TS.1 – TS.6, the OLS estimators have the usual nor-mal distribution (conditional on X ). The usual F-and t-tests are valid.
-
Using dummy explanatory variables in time series
在时间序列中使用虚拟解释变量-
Period: 1913-1984
时间:1913-1984 -
During World War II, the fertility rate was temporarily lower
二战期间,生育率暂时较低 -
It has been permanently lower since the introduction of the pill in 1963
自1963年推出避孕药以来,该数值一直处于较低水平
-
-
If we assume that the full set of CLM assumptions hold, we can reject \( H _0: \beta _{pe} = 0\) against the two-sided alternative at less than the 1% significance level \(( t _{pe} = 2.77 )\)
如果我们假设全套CLM假设成立,我们可以在低于1%显著性水平的情况下\(( t _{pe} = 2.77 )\),对双边替代方案拒绝 \( H _0: \beta _{pe} = 0\) -
The estimated effect is practically large (probably too large). A $100 increase in \(pe \) increases the estimated fertility rate by 8.3 children per thousand women.
估计的影响实际上很大(可能太大)。每千名妇女生育率增加100美元,估计增加8.3个孩子。 -
Fertility rates were much lover, on average, during WWII and after the introduction of the birth control pill.
平均而言,在二战期间和避孕药问世后,生育率要低得多。
Trends and Seasonality
趋势和季节性
-
Characterizing Trending Data
描述趋势数据-
Many series tend to increase over time, at least on average. They typically have up and down periods, but the overall trend is up. (Example: GDP)
许多系列往往随着时间的推移而增加,至少在平均水平上是这样。它们通常有上升和下降的时期,但总体趋势是上升的。(例如:GDP) -
Other variables tend to decline over time (such as the rate of traffic fatalities).
其他变量往往随着时间的推移而下降(如交通事故死亡率)。 -
We can find spurious relations among trending variables that have nothing to do with each other.
我们可以在趋势变量之间找到彼此无关的虚假关系。
-
-
Time series with trends
有趋势的时间序列
- Modelling a linear time trend
线性时间趋势建模
- Modelling an exponential time trend
指数时间趋势建模
- Example for a time series with an exponential trend
具有指数趋势的时间序列示例
-
Using trending variables in regression analysis
在回归分析中使用趋势变量-
If trending variables are regressed on each other, a spurious relationship may arise just because they grows over time
如果趋势变量相互回归,就可能因为它们随时间增长而产生虚假关系 -
In this case, it is important to include a trend in the regression
在这种情况下,在回归中包含趋势是很重要的
-
-
Example: Housing investment and prices
例如:住房投资和价格
- The are other factors, captured in the time trend, that affect invpc
时间趋势中捕获的其他因素也会影响invpc