Basic Econometrics - Unit 7/B Serial Correlation in Time Series Regressions

基础计量经济学(七/乙)时间序列回归中的序列相关性 2020/12/10

translated by damien from Marco Avarucci

Basic Econometrics - Unit 7/B Serial Correlation in Time Series Regressions

 计量经济学基础 第7/乙单元 时间序列回归中的序列相关性

  • Strict exogeneity ⇒ OLS is unbiased.
     严格的外生性⇒OLS是无偏的。

  • Contemporaneous exogeneity ⇒ OLS is consistent (provided the time series are weakly dependent).
     同期外生性⇒OLS是一致的(前提是时间序列具有弱依赖性)。

  • Unbiasedness/Consistency did not require assumptions on error autocorrelation.
     无偏性/一致性不需要假设误差自相关。

  • There are situations where the nature of the \(x _{jt}\) mean that serial correlation in \(u _t\) implies that \(u _t\) correlated with \(x _{jt}\).
     有些情况下,\(x _{jt}\)的性质意味着,\(u _t\) 中的序列相关意味着,\(u _t\)与(x _{jt}\)相关。

Testing for serial correlation

 测试序列相关性

  • Testing for AR(1) serial correlation with strictly exog. regressors
    AR(1)序列相关性测试与exog.回归函数

  • Large sample justification (unobservable residuals)
     大样本调整(不可观测残差)

  • Durbin-Watson test under classical assumptions
     经典假设下的Durbin-Watson检验

    • Under assumptions TS.1–TS.6, the Durbin-Watson test is an exact test (whereas the previous t-test is only valid asymptotically).
       在假设TS.1–TS.6下,Durbin-Watson检验是精确检验(而之前的t检验仅渐近有效)。

  • When strictly exogeneity does not hold, one or more \(x_{jt}\) might be correlated with with \(u {t-1}\).
     当严格外生性不成立时,一个或多个\(x
    {jt}\)可能与\(u _{t-1}\)相关。

  • 𝑡−test and DW test are not valid (even asymptotically)
     𝑡−检验和DW检验无效(甚至是渐近的)

  • Example: lagged dependent variables as regressors: \(y_{t-1}\) and \(u {t-1}\) are obviously correlated.
     例如:作为回归变量的滞后因变量:\(y
    {t-1}\)和\(u _{t-1}\)有明显的相关性。

  • Consider the AR(1) test.
     考虑AR(1)测试

  • Testing for AR(1) serial correlation with general regressors
    AR(1)序列相关性的一般回归检验

    • The t-test for autocorrelation can be easily generalized to allow for the possibility that the explanatory variables are not strictly exogenous:
       自相关的t检验可以很容易地推广,以允许解释变量不是严格的外生变量的可能性:

    • The test may be carried out in a heteroscedasticity robust way
       检验可以异方差稳健的方式进行
  • General Breusch-Godfrey test for AR(q) serial correlation
     AR(q)序列相关的一般Breusch-Godfrey检验

Correcting for serial correlation with strictly exog. regressors

 用严格exog回归函数校正序列相关性

  • Under the assumption of AR(1) errors, one can transform the model so that it satisfies all GM-assumptions. For this model, OLS is BLUE.
     在AR(1)误差的假设下,可以对模型进行变换,使其满足所有GM假设。对于这个模型,OLS是蓝色的。

  • Problem: The AR(1)-coefficient is not known and has to be estimated (FGLS)
     问题:AR(1)-系数未知,必须估计(FGLS)

Serial correlation-robust inference after OLS

 OLS后的序列相关稳健推理

  • In the presence of positive serial correlation, OLS standard errors overstate statistical significance
     在正序列相关的情况下,OLS标准差夸大了统计显著性

  • One can compute serial correlation -robust std. errors after OLS
     我们可以在OLS之后计算序列相关稳健标准误差

  • This is useful because FGLS requires strict exogeneity and assumes a very specific form of serial correlation (AR(1) or, generally, AR(q))
     这是有用的,因为FGLS需要严格的外生性,并假设一种非常特殊的序列相关形式(AR(1)或,通常,AR(q))

  • Serial correlation-robust standard errors:
     序列相关稳健标准误差:

  • Serial correlation-robust F-and t-tests are also available
     序列相关稳健F检验和t检验也可用

  • Correction factor for serial correlation (Newey-West formula)
     序列相关校正系数(Newey-West公式)

  • Discussion of serial correlation-robust standard errors
    讨论序列相关稳健标准误差

    • The formulas are also robust to heteroscedasticity; they are therefore called “heteroscedasticity and autocorrelation consistent” (=HAC)
       公式对异方差也很稳健,因此称为“异方差和自相关一致”(=HAC)

    • For the integer g, values such as g=2 or g=3 are normally sufficient (there are more involved rules of thumb for how to choose g)
       对于整数g,像g=2或g=3这样的值通常就足够了(对于如何选择g,有更复杂的经验法则)

    • Serial correlation-robust standard errors are only valid asymptotically; they may be severely biased if the sample size is not large enough
       序列相关稳健标准误差仅渐近有效;如果样本量不够大,它们可能会严重偏误

    • The bias is the higher the more autocorrelation there is; if the series are highly correlated, it might be a good idea to difference them first
       偏差越大,自相关就越多;如果序列高度相关,最好先将它们区分开来

    • Serial correlation-robust errors should be used if there is serial corr. and strict exogeneity fails (e.g. in the presence of lagged dep. var.)
       如果存在序列相关性且严格的外生性失败(例如存在滞后的dep.var),则应使用序列相关性稳健误差

Show Disqus Comments

Post Directory